Vous êtes ici : Accueil » Recherches » Publications

Publications

Types de publications / Types of publication

2025

A. Farchi, M. Chrust, M. Bocquet, and M. Bonavita, “Development of an offline and online hybrid model for the Integrated Forecasting System,” Q. J. R. Meteorol. Soc., vol. 151, p. e4934, 2025, doi: 10.1002/qj.4934.

B. Pang, S. Cheng, Y. Huang, Y. Jin, Y. Guo, I. C. Prentice, S. P. Harrison, and R. Arcucci, “Fire-Image-DenseNet (FIDN) for predicting wildfire burnt area using remote sensing data,” Computers & Geosciences, vol. 195, p. 105783, 2025.

Cheng, S., Bocquet, M., Ding, W., Finn, T. S., Fu, R., Fu, J., Guo, Y., Johnson, E., Li, S., Liu, C., Moro, E. N., Pan, J., Piggott, M., Quilodran, C., Sharma, P., Wang, K., Xiao, D., Xue, X., Zeng, Y., … Arcucci, R. (2025). Machine learning for modelling unstructured grid data in computational physics: A review. Information Fusion, 123, 103255. https://doi.org/10.1016/j.inffus.2025.103255

Dumont Le Brazidec, J., Vanderbecken, P., Farchi, A., Broquet, G., Kuhlmann, G., and Bocquet, M.: Quantification of CO2 hotspot emissions from OCO-3 SAM CO2 satellite images using deep learning methods, Geosci. Model Dev., 18, 3607–3622, https://doi.org/10.5194/gmd-18-3607-2025, 2025.

Durand, C., Finn, T. S., Farchi, A., Bocquet, M., Brajard, J., and Bertino, L.: Four-dimensional variational data assimilation with a sea-ice thickness emulator, The Cryosphere, 19, 5613–5637, https://doi.org/10.5194/tc-19-5613-2025, 2025.

F. Couvidat, L. Lugon, P. Messina, K. Sartelet, and A. Colette, “Optimizing computation time in 3D air quality models by using aerosol superbins within a sectional size distribution approach: Application to the CHIMERE model,” Journal of Aerosol Science, vol. 187, p. 106572, 2025, doi: https://doi.org/10.1016/j.jaerosci.2025.106572.

Farhat, M., Pailler, L., Camredon, M., Maison, A., Sartelet, K., Patryl, L., Armand, P., Afif, C., Borbon, A., & Deguillaume, L. (2025). Investigating the role of anthropogenic terpenoids in urban secondary pollution under summer conditions by a box modeling approach. Environ. Sci.: Atmos., 5(5), 574–590. https://doi.org/10.1039/D4EA00112E

Gant, S., Chang, J., Hetherington, R., Hanna, S., Tickle, G., Spicer, T., McMasters, S., Fox, S., Meris, R., Bradley, S., Miner, S., King, M., Simpson, S., Mazzola, T., McGillivray, A., Tucker, H., Björnham, O., Carissimo, B., Fabbri, L., … Aasen, A. (2025). Pressure-liquefied ammonia jet dispersion: Multi-model intercomparison using Desert Tortoise and FLADIS field data. Atmospheric Environment: X, 28, 100389. https://doi.org/10.1016/j.aeaoa.2025.100389

H. Fan, S. Cheng, A. J. de Nazelle, and R. Arcucci, “ViTAE-SL: A vision transformer-based autoencoder and spatial interpolation learner for field reconstruction,” Computer Physics Communications, vol. 308, p. 109464, 2025.

J. Lever, S. Cheng, C. Quilodrán Casas, C. Liu, H. Fan, R. Platt, A. Rakotoharisoa, E. Johnson, S. Li, Z. Shang, and R. Arcucci, “Facing & mitigating common challenges when working with real-world data: The Data Learning Paradigm,” Journal of Computational Science, vol. 85, p. 102523, 2025.

Jacquot, O. and Sartelet, K.: Numerical investigations on the modelling of ultrafine particles in SSH-aerosol-v1.3a: size resolution and redistribution, Geosci. Model Dev., 18, 3965–3984, https://doi.org/10.5194/gmd-18-3965-2025, 2025.

Jean-Pierre Minier, Martin Ferrand, Christophe Henry (2025) Understanding Turbulent Systems - Progress in Particle Dynamics Modeling, https://doi.org/10.1007/978-3-031-84466-9

Vous souhaitez accéder à :

Jean-Pierre Minier, Martin Ferrand, Christophe Henry (2025) Understanding Turbulent Systems - Progress in Particle Dynamics Modeling, https://doi.org/10.1007/978-3-031-84466-9

Pour continuer, merci de renseigner votre adresse email.
Les liens vous seront envoyés par email directement.

K. Nathanael, S. Cheng, N. M. Kovalchuk, R. Arcucci, and M. J. H. Simmons, “Optimisation of microfluidic synthesis of silver nanoparticles via data-driven inverse modelling,” Chemical Engineering Research and Design, vol. 216, pp. 523–530, 2025.

Li, S., Zheng, T., Farchi, A., Bocquet, M., & Gentine, P. (2025). Probabilistic data assimilation for ensemble distribution projections with generative machine learning: A Lorenz ’96 proof-of-concept. Geophysical Research Letters, 52, e2024GL112523. https://doi.org/10.1029/2024GL112523

Lostier, A., Sarica, T., Lasne, J., Roose, A., Sartelet, K., Jamar, M., Gaudion, V., Dusanter, S., Lesueur, D., Chen, H., Salameh, T., & Romanias, M. N. (2025). Real-World Asphalt Pavement Emissions: Combining Simulation Chamber Measurements and City Scale Modeling to Elucidate the Impacts on Air Quality. ACS ES&T Air, 2(3), 426–435. https://doi.org/10.1021/acsestair.4c00323

Lugon, L., Kemgne, C., Vot, V. L., Mauchard, N., Quang, B. V., Wang, C., jin Soo-Park, Kim, Y., Vigneron, J., Dugay, F., Sanchez, O., & Sartelet, K. (2025). How far can we improve urban air quality and population exposure by changing mobility? An analysis in Paris. Science of The Total Environment, 1000, 180266. https://doi.org/https://doi.org/10.1016/j.scitotenv.2025.180266

Meuer, J., Witte, M., Finn, T. S., Timmreck, C., Ludwig, T., & Kadow, C. (2025). Latent Diffusion and Spatio-Temporal Transformers Generate Large Ensemble Climate Simulations. IEEE Transactions on Artificial Intelligence, 1–14. https://doi.org/10.1109/TAI.2025.3621121

Park, S.-J., Lugon, L., Jacquot, O., Kim, Y., Baudic, A., D'Anna, B., Di Antonio, L., Di Biagio, C., Dugay, F., Favez, O., Ghersi, V., Gratien, A., Kammer, J., Petit, J.-E., Sanchez, O., Valari, M., Vigneron, J., and Sartelet, K.: Population exposure to outdoor NO2, black carbon, and ultrafine and fine particles over Paris with multi-scale modelling down to the street scale, Atmos. Chem. Phys., 25, 3363–3387, https://doi.org/10.5194/acp-25-3363-2025, 2025.

Sartelet, K., Kerckhoffs, J., Athanasopoulou, E., Lugon, L., Vasilescu, J., Zhong, J., Hoek, G., Joly, C., Park, S.-J., Talianu, C., van den Elshout, S., Dugay, F., Gerasopoulos, E., Ilie, A., Kim, Y., Nicolae, D., Harrison, R. M., & Petäjä, T. (2025). Air pollution mapping and variability over five European cities. Environment International, 199, 109474. https://doi.org/https://doi.org/10.1016/j.envint.2025.109474

Song, H., Zhao, H., Liu, X., Zhang, Y., Han, Z., Kim, Y., Sartelet, K., Zhang, X., de Fátima Andrade, M., Wang, M., & Gao, L. (2025). Street-scale traffic emission inventory derived from GeoVideo and coupled WRF/Chem–MUNICH modelling for urban air quality management: A case study in Kaifeng, China. Urban Climate, 64, 102689. https://doi.org/10.1016/j.uclim.2025.102689

Squarcioni, A., Roustan, Y., Valari, M., Kim, Y., Sartelet, K., Lugon, L., Dugay, F., & Voitot, R. (2025). To what extent is the description of streets important in estimating local air quality: a case study over Paris. Atmospheric Chemistry and Physics, 25(1), 93–117. https://doi.org/10.5194/acp-25-93-2025

Van Poecke, A., Finn, T. S., Meng, R., Van den Bergh, J., Smet, G., Demaeyer, J., Termonia, P., Tabari, H., & Hellinckx, P. (2025). Self-Attentive Transformer for Fast and Accurate Postprocessing of Temperature and Wind Speed Forecasts. Artificial Intelligence for the Earth Systems, 4(3), Article 240127, 240127. https://doi.org/10.1175/AIES-D-24-0127.1

Wang, G., & Cheng, S. (2025). Can foundation language models predict fluid dynamics? Engineering Applications of Artificial Intelligence, 158, 111427. https://doi.org/10.1016/j.engappai.2025.111427

Vous souhaitez accéder à :

Wang, G., & Cheng, S. (2025). Can foundation language models predict fluid dynamics? Engineering Applications of Artificial Intelligence, 158, 111427. https://doi.org/10.1016/j.engappai.2025.111427

Pour continuer, merci de renseigner votre adresse email.
Les liens vous seront envoyés par email directement.

Wang, K., Bertoli, G., Cheng, S., Schröter, K., Caporali, E., Piggott, M. D., Wang, Y., & Arcucci, R. (2025). AI-Empowered Latent Four-dimensional Variational Data Assimilation for River Discharge Forecasting. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 18, 24676–24689. https://doi.org/10.1109/JSTARS.2025.3611136

Wang, K., Cheng, S., Piggott, M.D., Dance, S.L., Wang, Y. & Arcucci, R. (2025) Latent data assimilation with non-explicit observation operator in hydrology. Quarterly Journal of the Royal Meteorological Society, 151(772), e5009. Available from: https://doi.org/10.1002/qj.5009

Xu, Z., Cheng, S., He, H., Wang, L., Sun, W., Li, J., & Xu, L. L. (2025). BCWildfire: A Long-term Multi-factor Dataset and Deep Learning Benchmark for Boreal Wildfire Risk Prediction. https://arxiv.org/abs/2511.17597

Xu, Z., Li, J., Cheng, S., Rui, X., Zhao, Y., He, H., Guan, H., Sharma, A., Erxleben, M., Chang, R., & Xu, L. L. (2025). Deep learning for wildfire risk prediction: Integrating remote sensing and environmental data. ISPRS Journal of Photogrammetry and Remote Sensing, 227, 632–677. https://doi.org/10.1016/j.isprsjprs.2025.06.002

Y. Zhuang, S. Cheng, and K. Duraisamy, “Spatially-aware diffusion models with cross-attention for global field reconstruction with sparse observations,” Computer Methods in Applied Mechanics and Engineering, vol. 435, p. 117623, 2025.

Z. Xia and S. Cheng, “PyTorchFire: A GPU-accelerated wildfire simulator with Differentiable Cellular Automata,” Environmental Modelling & Software, vol. 188, p. 106401, 2025.

Vous souhaitez accéder à :

Z. Xia and S. Cheng, “PyTorchFire: A GPU-accelerated wildfire simulator with Differentiable Cellular Automata,” Environmental Modelling & Software, vol. 188, p. 106401, 2025.

Pour continuer, merci de renseigner votre adresse email.
Les liens vous seront envoyés par email directement.

Zhou, H., & Cheng, S. (2025). Improving long-term autoregressive spatiotemporal predictions: A proof of concept with fluid dynamics. Computer Methods in Applied Mechanics and Engineering, 447, 118332. https://doi.org/10.1016/j.cma.2025.118332

Zhou, Y., Kong, R., Xu, Z., Xu, L., & Cheng, S. (2025). Comparative and interpretative analysis of CNN and transformer models in predicting wildfire spread using remote sensing data. Journal of Geophysical Research: Machine Learning and Computation, 2, e2024JH000409. https://doi.org/10.1029/2024JH000409

Zhu, M., Wu, L., Bocquet, M., Cao, J., Kong, L., Zhang, S., Cao, W., Tang, X., Su, H., Zhu, J., & Wang, Z. (2025). Learning physically interpretable deep networks from reanalysis data for medium-term regional PM2.5 forecasts. Environmental Research Letters, 20(8), 084032. https://doi.org/10.1088/1748-9326/ade606