Chargement en cours

Soutenance de thèse de Cécile Defforge (Lundi 14 octobre 2019)

Retour
mar. 17 septembre 2019

Titre de thèse

Assimilation de données pour des applications micro-météorologiques avec le modèle de mécanique des fluides Code_Saturne

Lieu de soutenance

Amphithéàtre Caquot 2 à l'Ecole des Ponts ParisTech (Champs-sur-Marne)

Jury de thèse

Dr. Sophie RICCI, CERFACS -- Rapporteure

Dr. Alberto MARTILLI, CIEMAT -- Rapporteur

Pr. Chantal STAQUET, LEGI - Université Grenoble Alpes -- Examinatrice

Dr. Olivier TALAGRAND, LMD – CNRS -- Examinateur

Dr. Bertrand CARISSIMO, CEREA – Ecole des Ponts ParisTech  et EDF R&D -- Directeur de thèse

Pr. Marc BOCQUET, CEREA – Ecole des Ponts ParisTech  et EDF R&D  – Co-directeur de thèse

M. Raphaël BRESSON, CEREA – Ecole des Ponts ParisTech  et EDF R&D  -- Invité

Dr. Patrick ARMAND, CEA DAM/DIF – Invité

Résumé de la thèse

La qualité de l’air est un enjeu sanitaire et environnemental majeur. Par ailleurs, l'estimation précise des potentiels éoliens est la source d’importantes retombées économiques et environnementales. Pour étudier ces deux sujets, il est nécessaire de reconstituer précisément les champs de vent locaux grâce à des modèles numériques de micro-météorologie. Ces simulations sont extrêmement sensibles aux conditions météorologiques aux limites du domaine d’étude. Jusqu’à présent, les conditions aux limites (CL) étaient estimées à partir de simulations à plus grande échelle, qui fournissent des informations imprécises, voire incomplètes pour l’utilisation à micro-échelle. Par conséquent, la méconnaissance des CL représente une source majeure d’erreur et d’incertitude dans les études micro-météorologiques.
Les sites susceptibles d’accueillir un parc éolien et les environnements bâtis (quartiers urbains ou sites industriels) peuvent être équipés d’instruments de mesures météorologiques et de concentration de polluants. Les observations fournies par ces instruments constituent une seconde source d’information, jusqu’à ce jour peu exploitée pour les études micro-météorologiques. En effet, étant à l’intérieur du domaine, les observations sont perturbées par la géométrie complexe des sites étudiés. Afin d'améliorer la précision des CL et donc des simulations atmosphériques à l'échelle locale, des méthodes d'assimilation de données (AD) adaptées à cette problématique pourraient permettre de mettre à profit les observations disponibles.
Jusqu’à présent, les méthodes d’AD ont été principalement développées pour répondre aux besoins de la météorologie à grande échelle et donc utilisées pour corriger les conditions initiales (CI). Afin d'élargir le champ d'application de l’assimilation de données aux simulations à l’échelle locale, il faut adapter les méthodes d'AD pour qu'elles permettent de corriger les CL plutôt que les CI.
Parmi les méthodes d'assimilation de données existantes, deux semblent compatibles avec les modèles de mécanique des fluides atmosphérique (CFD) utilisés pour la micro-météorologie en géométrie complexe : l’algorithme de nudging direct et rétrograde (BFN) et le lisseur de Kalman d’ensemble itératif (IEnKS). Nous avons adapté ces deux méthodes d’un point de vue théorique pour inclure les CL dans les variables de contrôle. Les performances des versions adaptées du BFN et de l'IEnKS ont tout d'abord été étudiées avec un modèle simplifié d’écoulement atmosphérique à deux couches, basé sur les équations de Saint-Venant. Le BFN et l’IEnKS ont ensuite été testés en deux puis trois dimensions avec le module atmosphérique du modèle open-source de CFD Code_Saturne.
Le premier cas d’étude avec Code_Saturne correspond à une application réelle d’estimation de potentiel éolien dans une région montagneuse au relief très accidenté où trois mâts de mesure fournissent des observations de vent. Le second cas d’étude correspond à une étude de dispersion de polluants en milieu urbain, basé sur les observations de vent et de concentration, provenant de la campagne de mesures « Mock Urban Setting Test » aux USA. Dans ce second cas, la turbulence est également incluse dans les conditions aux limites. Dans les deux cas, une partie des observations est utilisée pour l’assimilation et le reste pour la validation des résultats.
Les expériences menées sur le premier cas ont révélé que les modèles de CFD présentent des non-linéarités trop fortes (recirculations derrière les obstacles) pour l’algorithme de BFN, fondé sur une hypothèse de linéarité. Les études avec cette méthode n'ont donc pas été poursuivies. En revanche, les deux cas d'étude ont montré la capacité de l'IEnKS à réduire l'erreur et l'incertitude sur les CL grâce à l'assimilation d'une petite dizaine d'observations, en un nombre raisonnable de calculs. Par suite, l'écart entre les champs de vent simulés et les observations de validation est également réduit. De même, l'incertitude sur les simulations est plus faible. Finalement, l'IEnKS permet d'estimer le potentiel éolien dans un cas et les concentrations en polluant dans l'autre, avec beaucoup plus de précision.

 

En poursuivant votre navigation sur ce site, vous acceptez nos conditions d'utilisation notamment l’utilisation de cookies afin d'améliorer la qualité de vos visites et réaliser des statistiques.
Mentions légales / Politique de confidentialitéX