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Machine learning, data assimilation and dynamical systems

Context
Data assimilation aims at estimating and forecasting a geophysical system by combining in a mathematically
optimal way a high-dimensional model and a large observation dataset of that system. This is especially
useful for chaotic systems whose horizon of predictability is intrinsically limited. Data assimilation has been
hugely successful in improving the skill of weather forecasting for the past 30 years.
More recently, machine learning techniques, and especially deep learning, made impressive breakthroughs in
image and speech recognition. These techniques are spreading to many fields in sciences. 
Data assimilation and machine learning share common goals and part of their mathematical foundations. The
general objective of this thesis is to look at the potential of machine learning techniques for data assimilation
and for modelling chaotic geophysical fluids such as the atmosphere.

Project
In  image  and  speech  recognition,  recurrent  neural  networks  were  shown  to  be  potentially  remarkable
substitutes for dynamical models [Lecun et al. 2015]. It is natural to wonder if machine learning techniques
could  also  apply  to  high-dimensional  chaotic  geophysical  models.  Specifically,  neural  networks  (NNs,
[Goodfellow  et  al.,  2014])  could  be  a  surrogate  for  a  whole  model  or  for  a  part  of  it,  such  as  the
representation of subgrid scale processes (e.g., Gentine et al 2018).  In order to determine the coefficients of
a NN, one would need to massively observe the geophysical model to be emulated. However, in practice,
these observations would be sparse and noisy, potentially much more than in image recognition applications. 

Figure: Comparing the forecasts of the chaotic Kuramoto-Sivashinki model and of a surrogate model obtained from the observation
of the true model [Bocquet et al., 2019]. The y-axis spans the 128 variables of the discretised model and the x-axis shows time.

In the wake of very preliminary results [Bocquet et al., 2019 and references therein], the first objective of
this  PhD is  to  test  if  we  can  combine  data  assimilation  and  machine  learning  techniques  to  learn  the
dynamics  of  a  chaotic  model.  This  main  objective  is  declined  into  subquestions,  spanning  from
methodological to more fundamental:  
- How difficult is the learning step? Can we speed it up?



- What are the most relevant representations for the surrogate model? Which architecture should we design
for the NN? What are the most relevant variables to work with?
- What are the properties of the surrogate model as a dynamical system? Does it have good shadowing or
forecasting skills on the full system? Does its asymptotic behaviour match that of the original model?

These  questions  will  be  tackled theoretically  and numerically  with increasingly complex  low-order  and
intermediate  chaotic  models  such  as  the  Lorenz  models,  a  basic  QG model  and  a  more  advanced one
representing  realistic  variability  modes  of  the  atmosphere  [D’Andrea  &  Vautard,  2001].  The  surrogate
models obtained from the combined used of data assimilation and machine learning could be compared to
the reduced models obtained from the true model using more classical techniques.

A second objective of this PhD is to determine how useful can machine learning techniques be to improve
data assimilation techniques, when we already know the model to a large extent. We shall in particular focus
on the  ensemble Kalman filter [Evensen, 2009], a very successful and popular data assimilation technique
but which requires fine tunings that could be addressed by machine learning techniques.
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Location: 
The candidate will work at École des Ponts ParisTech (Champs-sur-Marne, RER A Noisy-Champs) and 
École Normale Supérieure (Paris, RER B Luxembourg).

Collaborations:
The PhD  will be co-supervised by Marc Bocquet in CEREA, a joint laboratory of École des Ponts ParisTech
and EdF R&D and Fabio D’Andrea in LMD (Laboratoire de Météorologie Dynamique) at École Normale 
Supérieure.

Key words:
Data assimilation, machine learning, deep learning, geofluids, dynamical systems, dynamical systems, chaos.

Duration:
3 years, PhD start: fall of 2019.

Skills and profile: The PhD candiadate must have a master degree in either fluid mechanics, fundamental 
geosciences, computational physics or applied mathematics. Moreover, the candidate should be comfortable 
with programming languages such as Python, Fortran and/or C/C++. Some knowledge of deep learning tools
such as TensorFlow, Keras, Pytorch would be appreciated.

Contacts:
Marc Bocquet (marc.bocquet@enpc.fr) and Fabio D’Andrea (fabio.dandrea@lmd.ens.fr)


