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Abstract. The purpose of this article is to perform the inverse modeling of emissions
at regional scale for photochemical applications. The case study is the region of Lille in
the Northern France for simulations in May 1998. The underlying Chemistry-Transport-
Model, Polair3D, has been validated with one year of model-to-observation comparisons
over Lille. Polair3D has an adjoint mode, which enables inverse modeling with a vari-
ational approach. A sensitivity analysis has been performed so as to select the emission
parameters to be modified in order to improve ozone forecasts. It has been shown that
inverse modeling of the time distribution of nitrogen oxides emissions leads to satisfac-
tory improvements even after the learning period. A key issue is the robustness of the
inverted emissions with respect to uncertain parameters. A brute-force second-order sen-
sitivity analysis of the optimized emissions has been performed with respect to other pa-
rameters and has proven that the optimized time distribution of NOx emissions is ro-
bust.

1. Introduction

Emission inventories used in air pollution modeling ad-
mit a large range of uncertainties [Hanna et al., 2001, for
instance]:

1. the spatial distribution of emissions is not always well
known and may be highly heterogeneous;

2. the time distribution of emissions is strongly related
to variable parameters (such as traffic conditions, biogenic
activity);

3. the chemical distribution is also uncertain: the rela-
tions between the chemical species given by the emission
inventories, the “real chemical species” and the “model
species” (the species described in Chemistry-Transport-
Models) are often questionable.

A growing field is then logically the inverse modeling
of emissions (more precisely: of parameters related to the
emissions) on the basis of a combined use of model outputs
and observational data (provided by monitoring networks).
These topics belong to the larger domain of data assimila-
tion.

Moreover there are further reasons to support these ap-
proaches. One may be interested in estimating the emis-
sions of a given sector or of a given country in order to
check the fulfillment of a regulatory agreement. This is typ-
ically the case for the gases implied in the Greenhouse effect
at global scale or for the pollutants regulated by the Long
Range Transport of Air Pollution Protocol (LRTAP) over
Europe. Inverse modeling of emissions is also an interesting
tool for such applications.

An increasing number of works has been devoted to these
topics in recent years. At global scale, passive tracers or
weakly reactive species, such as CO or CH4, have already
been studied. One can refer for instance to the work of
Kaminski [1998]; Bergamaschi et al. [2000]; Bousquet et al.
[1999]. In the case of linear tracers, such as radionuclides,

Copyright 2005 by the American Geophysical Union.
0148-0227/05/$9.00

many methods have already been proposed, following the
Chernobyl accident and the ETEX campaign [Hourdin and
Issartel , 2000].

The situation is quite different for reactive Chemistry-
Transport-Models, as the dependence of concentrations on
emissions is nonlinear. Moreover the models are character-
ized by high-dimensional systems (whose dimension is given
by the number of chemical species in the chemical mech-
anism). One can refer to the work of Elbern et al. [2000]
for academic studies and to Elbern and Schmidt [2001];
Mendoza-Dominguez and Russel [2001]; van Loon et al.
[2000] for examples at continental scales. A few works have
been devoted to the inverse modeling at regional scales:
we can refer for instance to Chang et al. [1997] for the in-
verse modeling of biogenic isoprene emissions over Atlanta
with the use of a Kalman filter. Another work is Mendoza-
Dominguez and Russel [2001] with a linearized method ap-
plied to Atlanta, as well.

The purpose of this paper is to perform inverse modeling
of emissions for air pollution applications at regional scale.
A key issue, which is not often investigated, is the robustness
of the inverted parameters: how to be sure that the results
are not only “fits” of the model outputs to the data ? What
is the quality of the new emission parameters ? How sen-
sitive are these parameters with respect to other uncertain
parameters (supposed to be known) ?

We have investigated these issues with an application to
northern France, over the region of Lille. A comprehensive
3D Chemistry-Transport-Model, Polair3D [Boutahar et al.,
2004], has been validated by comparisons to measured data
over one year [1998 in Quélo, 2004]. A sensitivity analy-
sis has also been performed in order to choose the relevant
parameters for inverse modeling. The choice was made to
perform inverse modeling of the time distribution of NOx

emissions. The emissions of NOx are the emissions that
have, at first-order, the greatest impact on ozone in this
case and their time distribution is not well known (contrary
to the spatial distribution, an exhaustive emission inventory
having been built in the framework of the French Research
Program PREDIT, a program for research, experimentation
and innovation in land transport).
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Inverse modeling has been performed through variational
methods, Polair3D having an adjoint mode. The learning
database is composed of data from the week of 11-15 May.
The use of the modified emission inventory improved the
simulated results of the two following weeks. Moreover the
robustness of the inversion has been investigated.

This paper is organized as follows. The second section
is devoted to the general presentation of the case study. In
the third section, some preliminary tests are made in order
to assess the sensitivity of model outputs with respect to
emission data. The cost function, that measures the dis-
crepancy between observations and model outputs, is also
studied. In the fourth section, the inverse modeling ap-
proach is presented and twin experiments (on the basis of
numerical data) are performed in order to validate the nu-
merical models. The impact of uncertainties (for instance
model errors) is investigated. In the fifth section, the real
case is studied with the inversion of a time distribution for
NOx emissions. A posteriori verifications and robustness
tests are also performed in order to assess the quality of the
optimized parameters.

2. Case Study

Lille is part of a dense urban area in Northern France
that includes many intermediate cities. Therefore the ma-
jority of pollution comes from local anthropogenic activities.
Pollution may also result from nonlocal sources since Lille
is sometimes located in the plume of highly polluted areas
(Paris, Ruhr, London). In order to take into account this
plume, a simulation at European scale is performed first and
the simulation domain over Lille is nested in it.

2.1. Brief Overview of the Chemistry-Transport-
Model: Polair3D

Polair3D [Boutahar et al., 2004] is a comprehensive 3D
Eulerian Chemistry-Transport-Model developed at CEREA
(laboratory at École Nationale des Ponts et Chaussées and
the Research and Development Division of Électricité de
France). It is one part of the Polyphemus modeling system
(Mallet et al. [2005], also developed at CEREA and avail-
able under the GNU General Public License at http://www.
enpc.fr/cerea/polyphemus/), notably devoted to impact
studies, forecasts and data assimilation for the atmospheric
dispersion of chemical species and radionuclides. Within
this system, Polair3D is mainly responsible for the time in-
tegration of the chemistry-transport equation. It includes
several chemical mechanisms, including RACM [Stockwell
et al., 1997] which was chosen for this study. The other com-
ponents of Polyphemus provide the input fields to Polair3D
(meteorological fields, deposition velocities, etc.), computed
using relevant physical parameterizations.

One of these components is the library AtmoData [Mallet
and Sportisse, 2005] which gathers the physical parameter-
izations. Thanks to this library and the programs available
with it (themselves part of Polyphemus), the following fields
were computed for this study:

1. the meteorological fields extracted from ECMWF
data;

2. the vertical diffusion coefficients computed with Louis’
parameterization [Louis, 1979];

3. the cloud attenuation computed in the same way as
advocated in Chang et al. [1987]; Madronich [1987];

4. the deposition velocities with Wesely’s parameteriza-
tion [Wesely , 1989];

5. the anthropogenic emissions from the EMEP inven-
tory, following Middleton et al. [1990], at European scale; at
regional scale, the emissions are generated as explained in
section 2.3;

6. the biogenic emissions computed as advocated in Simp-
son et al. [1999];

7. the boundary conditions (for the European simulation)
extracted from a Mozart 2 [Horowitz et al., 2003] simulation
over a typical year.

All these fields, that appear in the chemistry-transport
equation, are then available to Polair3D which in turn inte-
grates the equation in time with efficient numerical schemes.
It uses a first-order splitting method in which the advection
is integrated first, then the diffusion and finally the chem-
istry. The advection scheme is a third-order direct-space-
time scheme with a Koren flux limiter and is advocated
in Verwer et al. [1998]. The diffusion and the chemistry
are both integrated with a second-order Rosenbrock method
which is suitable for stiff problems and whose implicitness
enables the use of large time steps (in this study, 600 s at
both European scale and regional scale). As for chemistry,
to enforce the computational efficiency, the sparsity of the
Jacobian matrix involved in the Rosenbrock method is taken
into account as advocated in Sandu et al. [1996].

The simulations performed with Polair3D have proven to
be reliable. At European scale, the model has been vali-
dated notably over the year 2001. Details about this val-
idation may be found in Mallet and Sportisse [2004]. For
instance, the comparison with measurements from May to
August 2001 of ozone peaks at 242 stations (27, 000 mea-
surements) gives a root mean square of 22.7µg ·m−3 and a
correlation of 72.7%. At regional scale, the results are also
satisfactory as shown in the following sections.

One should note that the modeling system Polyphemus
provides data sets and parameterizations consistent with the
current knowledge in physics. Numerical adjustments that
are not supported by physics were discarded even if they
could lead to better results. This is the only means to en-
sure that the inverse modeling of emissions makes sense, i.e.
that the retrieved emissions have a chance to be closer to
the real emissions.

The last point to be emphasized is the availability of a
tangent linear mode and an adjoint mode of Polair3D with
respect to virtually any input parameter, including the emis-
sions. This feature is permitted due to automatic differen-
tiation [Mallet and Sportisse, 2004].

2.2. Domain

The domain covers the region of Greater Lille, over a 21
km × 24 km domain. The center of the domain is the city
of Lille. It is discretized with a 1 km × 1 km horizontal
grid and 9 vertical levels ranging from the ground to 3000
meters in order to include the atmospheric boundary layer.
The height of the first layer is 30 m and the thickness of the
other layers ranges from 120 m to 510 m.

2.3. Emissions over Lille

The anthropogenic emissions come from several databases:
1. EMEP inventory for VOCs, NOx, SO2 and CO, which

is the results of a “top-down” approach and is available in
annual totals over a 50 km × 50 km grid for each activity
sector (SNAP – Selected Nomenclature for Air Pollution);

2. traffic emissions delivered by the CETE institute (Cen-
tre d’Étude Technique de l’Équipement) over the Lille re-
gional administrative area on the basis of the road locations,
the distribution of vehicle categories and the emission factors
from the standard COPERT III European methodology;

3. total annual emissions of major industrial sources col-
lected by the DRIRE institute (Direction Régionale de
l’Industrie, de la Recherche et de l’Environnement): within
the Lille area, 20 point sources are taken into account in-
cluding production processes and waste treatment.
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Emissions from the EMEP inventory are replaced with

the detailed data provided by the two last databases when-

ever possible. A large part of the NOx emissions come from

the traffic (about 60%) and are therefore well described by

our inventory. This is highly valuable according to the sen-

sitivity of photochemical concentrations to the NOx emis-

sions.

The EMEP annual totals are first mapped to the simu-

lation grid. Because of the coarse resolution of the EMEP

inventory, the spatial distribution is mainly determined by

the land use coverage in order to associate the major part

of the emissions with urban areas. Thus, within an EMEP

cell, the emissions are distributed so as to give an appropri-

ate weight to the urban areas, the forests and the other areas

(respective weights: 12, 1.6 and 1). The two other databases

are already accurately distributed and their horizontal grid

matches the simulation domain.

The emissions are then vertically distributed to take into

account the stack heights and the elevation due to the high

temperature at release time.

Annual EMEP emissions and point sources are dis-

tributed monthly, weekly and hourly according to coef-

ficients provided by GENEMIS (Eurotrac-2 subproject –

http://www.gsf.de/eurotrac/) for each emission sector.

The time distribution of road traffic emissions is computed

on the basis of daily and hourly coefficients derived from

traffic activity measurements.

It is assumed that the NOx emissions are composed of

NO (10%) and NO2 (90%). The NMVOC emissions are

computed following Middleton et al. [1990].

2.4. Monitoring Network

The locations of the stations of the monitoring network

AREMA are plotted in figure 1 for ozone and in figure 2 for

NOx (one measurement of NO and NO2 per station). The

network includes urban and suburban stations and delivers

hourly measurements.

Figure 1. Monitoring network (red dot) and simulated
daily concentrations for ozone over Lille, 11 May 1998
(µgm−3).

Figure 2. Monitoring network (red dot) and simu-
lated daily concentrations for NO over Lille, 11 May 1998
(µgm−3).

2.5. Validation over Lille

Polair3D has been used in order to simulate air quality

over Lille for the year 1998. The boundary conditions have

been provided by continental runs of Polair3D. We refer to

Quélo [2004] for a more detailed description of the valida-

tion.

The model outputs have been compared to measured data

provided by the local monitoring network, AREMA. Out-

put concentrations have been interpolated to the locations

of the monitoring stations. Statistical measures (root mean

square, bias, correlation) have been computed with hourly

data for three species: O3, NO2 and NO. Polair3D has

shown a satisfactory agreement between simulated concen-

trations and observations [see Quélo, 2004]. In particular,

the correlation for NO2 is above 47% at all monitoring sta-

tions except one, which proves that Polair3D reproduces well

the spatio-temporal variability of NO2 concentrations.

2.6. Setup of the Inverse Modeling Case

The setup of the modeling case is the same as for the for-

ward simulations. The full simulation system has been used,

without any limitations in the physics or in the numerical

schemes.
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Figure 3. Average surface emissions for NO in
µg ·m−2 · s−1 and average wind at ground in m · s−1. 11
May 1998.

We have chosen to study the three weeks after 11 May.
We have focussed on the month of May. The average

wind field at the ground is plotted in figure 3 for one day
(11 May). For this day, the average wind velocity is of the
magnitude 2 m · s−1, which corresponds to a residence time
of 3 hours for the pollutants in the simulation domain. This
situation is quite representative for this month.

3. Some Preliminary Tests: First-Order
Sensitivity Analysis
3.1. Sensitivity Analysis of the Cost Function

The purpose of this subsection is to investigate the sensi-
tivity of a cost function, that describes the discrepancy be-
tween model outputs and observational data, with respect
to input parameters for Polair3D. Similar studies have al-
ready been performed but they have not been devoted to
cost functions (for instance Segers [2002] over England and
Menut [2003] over Paris). This is a key step in order to
assess the feasibility of inverse modeling.
3.1.1. A Few Notations

In the following, we consider that the model outputs of
Polair3D are of the form:

c = f(k) (1)

c is a vector of space- and time-distributed chemical con-
centrations and is called the state vector. k is the vector of
all the input parameters to the Chemistry-Transport Model
(see below for examples).

The observations may be compared to c thanks to an
observation operator, which is usually written as H. In
our case (ground observations), H is a projection matrix,
which maps the vector c to the values of several chemical
concentrations at the monitoring stations (at given spatial
locations and given dates). Hc is therefore the vector of
observations deduced from the state c: (Hc)i is the i-th
observation, where i is an index labelling time, space and
chemical species. obsi represents the observations, i.e. the
measured concentration for species O3, NO and NO2 (mea-
sured by the monitoring network AREMA).

The cost function is defined in order to estimate the dis-
crepancy between the observations (obs) and the numerical
results provided by the model (Hf(k)). It is usually written
in the following form:

J = (Hf(k)− obs)T R−1 (Hf(k)− obs) (2)

where R is the so-called covariance matrix of the observation
error.

In order to perform a sensitivity analysis, we multiply
the input parameters k by a scalar numerical parameter α.

Typically, α ranges from 0.5 to 1.5 in order to model pertur-
bations of magnitude 50% for k. The reference case is given
by α = 1. We then write the cost function as a function of
α with given values of the input parameters k (given by the
reference case):

J(α) = (Hf(αk)− obs)T R−1 (Hf(αk)− obs) (3)

Hereafter, we assume that the observations are uncorrelated
and that the observation error variances are the same for all
observations. In practice we can therefore take R = I, the
identity matrix. The cost function is then a spatial and time
average, over the monitoring network and over one day (for
this section), respectively.

The evolution of J with respect to the perturbation pa-
rameter α has been computed for several input parameters
k:

1. the lateral boundary conditions provided by the con-
tinental simulation for NO, NO2, O3 and the remaining
species (figure 4);

2. the vertical eddy coefficient Kz (figure 5);

3. the kinetic rate of the reaction O3+NO → NO2 (in or-
der to quantify the segregation effects on chemical kinetics,
figure 6);

4. the emission fluxes for the primary pollutants NO,
NO2, CO, SO2 and VOC (figure 7);

5. the dry deposition velocities for NO2, O3 and the re-
maining species (figure 8);

6. the attenuation coefficient for photolysis (parameter-
izing the effects of clouds; figure 9).

3.1.2. Results
The simulations have been performed over one day (11

May). The results depend on the chosen day but are repre-
sentative of the typical sensitivity levels (results not reported
here). In the following, we have plotted the sensitivity with
a constant variation of α ranging from 0.5 to 1.5, which may
not correspond to the actual uncertainties for the whole pa-
rameters. Even if the magnitude of these uncertainties may
be more or less known (see Hanna et al. [2001] for instance),
we have chosen to quantify the impact of similar perturba-
tions in the inputs. Notice that the scale of each figure has
been adapted to the values of the cost function.

As ozone is a regional/continental pollutant, it is logical
to get a large impact of ozone boundary conditions. On the
other hand, the impact of NOx boundary conditions is much
weaker (figure 4).

The dependence on Kz at the first level (30 meters) or
strictly above are indicated in figure 5. As expected, the
sensitivity with Kz is higher at 30m than above.

The segregation effect has been parameterized by multi-
plying the kinetic rate of the formation of NO2 from O3 and
NO. The impact is plotted in figure 6. Notice that the real
value is highly uncertain (the segregation effect is usually
not described by comprehensive 3D Chemistry-Transport-
Models).

The sensitivity with respect to emissions is illustrated in
figure 7. A key result is the strong impact of NO emissions.

The dry deposition velocity of O3 is also a key parame-
ter as compared to the other deposition velocities (figure 8).
The parameterization for cloud attenuation of photolysis is
also not well known, due to the difficult diagnosis of clouds,
hence, the sensitivity plotted in figure 9 (that has a quite low
value as compared to other ones) may be underestimated.

To summarize, these preliminary results emphasize the
impact of the boundary conditions for ozone and the im-
pact of NOx emissions.
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Notice that the cost function J does not systematically

admit a local minimum in the range [0.5, 1.5] for α.
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Figure 4. Dependence of the cost function on boundary
conditions.
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Figure 5. Dependence of the cost function on Kz.
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Figure 6. Dependence of the cost function on the kinetic
rate of O3 + NO → NO2.
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Figure 7. Dependence of the cost function on emissions.
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Figure 8. Dependence of the cost function on dry de-
position velocities.
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Figure 9. Dependence of the cost function on cloud
attenuation.

3.2. Time and Space Impact of NOx Emissions

A key issue for inverse modeling is to reduce the dimen-

sion of the control space (that is to say the number of degrees

of freedom to be optimized). The emission data is given by

3D fields (two dimensions for surface emissions and one di-

mension for time) for every emitted species, which gives a

very large number of parameters. According to the previous

tests, the emission data that have the greatest impact by far

are the NOx emissions. Hence the control space should be

reduced by first discarding all other emitted species.

To further reduce the control space, we now investigate

the space and time impact of given NOx emissions. We pro-

ceed in the following way:

1. for the spatial impact, the NOx emissions of the grid

cell (15, 10) (arbitrarily chosen) are perturbed by +30% at

each time step. The differences in the daily averages are

then computed for species O3 (figure 12), NO (figure 10)

and NO2 (figure 11).

2. for the time impact, a perturbation of +30% is applied

at 0300 UT to NOx emissions in all grid cells. We then com-

pute the time evolution (on a hourly basis) of the differences

in the spatial averages.

The impact of a perturbation in NOx emissions is highly

local in space. The largest difference for the three species

output (NO, NO2, O3) is located in the grid cell where the

emission occurs. In the vicinity of this cell, the difference is

reduced by a factor of 20 for NO and by a factor of 6 for

NO2 or O3. A few kilometers further, the emissions of NOx

have no more impact.

The figure 13 illustrates how long a perturbation in NOx

emissions has an impact on the monitored concentrations.

After 3 hours, the impact may be neglected. This means

that an observation may give some information for emis-

sions in the three previous hours. This may be partially

related to the residence time in the domain.

Figure 10. Map of the difference in averaged concen-
trations for NO due to a perturbation in NOx emission
in a given cell.

Figure 11. Map of the difference in averaged concen-
trations for NO2 due to a perturbation in NOx emission
in a given cell.

Figure 12. Map of the difference in averaged concen-
trations for O3 due to a perturbation in NOx emission in
a given cell.
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Figure 13. Time evolution of the difference in averaged
concentrations for O3, NO and NO2 due to a perturba-
tion in NOx emissions at 0300 UT.

4. Twin Experiments for Inverse Modeling
of Emissions
4.1. Some Notations
4.1.1. Control Variables

An accurate emission inventory has been made over Lille,
in the framework of the French Program PREDIT (program
of research, experimentation and innovation in land trans-
port) in order to evaluate the health impact of emissions
(http://www.certu.fr/doc/env/echange/predit/predit.
htm). The spatial distribution of emissions is therefore as-
sumed to be fairly accurate. The situation is quite different
for the time distribution, which is given by monthly, daily
and hourly coefficients. The coefficients are derived from
average situations.

We have thus chosen, as control parameters, the time dis-
tribution of the most sensitive emitted species, namely NOx.
The emissions are parameterized with the form:

ENOx(x, t) = α(t)ẼNOx(x, t) (4)

where ẼNOx(x, t) are the emissions given by the emission in-
ventory and α(t) are hourly coefficients applied to emissions
over the whole domain. There are therefore 24 coefficients
per day. In the reference case, α(t) = 1 and we try to per-
form inverse modeling of α(t). We have chosen to focus
on weekdays (that have different emissions as compared to
weekends).

Figure 14. Time distribution for NOx emissions over
Lille from 10 May (Sunday) to 17 May (Sunday).

The choice of the control parameters is ruled by (at least)
two criteria:

1. the impact on the cost function has to be large enough
(see section 3);

2. they are supposed to be valuable for other days. Notice
the time distributions for the week days are similar (figure
14).

The purpose is then to get a time distribution for traffic
emissions of NOx for the Monday-Friday period.
4.1.2. Choice of the Cost Function

Inverse modeling requires the specification of error statis-
tics for three kinds of data: model outputs, measurements
and control parameters (the so-called background terms). It
is usually assumed that the model is perfect and we follow
the same assumption. We have also chosen not to include
a background term in the cost function: mathematically
speaking, this term may be viewed as a penalty term or a
regularization needed by ill-posed problems. In our case, the
number of observations is larger that the number of control
parameters so that this term is not required. Moreover we
want to allow a strong sensitivity of the results with respect
to the background term. The observational error is assumed
to be constant over all the monitoring stations.

On the basis of these assumptions, the cost function is:

J(α) =
∑

i

(
(Hf(αẼNOx))i − obsi

)2
(5)

where i labels the time, space and chemical “position” of the
observations. We have only written the dependence of the
model output with respect to NOx emissions. The model
is taken as a strong constraint (no model error), a constant
weight is given to all observations and no background term
is included.

We now want to minimize J(α) with respect to α.
4.1.3. Numerics and CPU Performance

This minimization problem may be solved by many al-
gorithms. We have chosen to use the iterative algorithm
BFGS [Byrd et al., 1995] which belongs to the family of gra-
dient algorithms. This requires to have at our disposal the
gradient ∇αJ .

As previously mentioned, Polair3D has been built in or-
der to have an adjoint mode easily available through auto-
matic differentiation [Mallet and Sportisse, 2004]. Polair3D
is written in Fortran 77 and may therefore be automatically
differentiated, as it is, by O∂yssée [developed at Inria, Faure
and Papegay , 1998]. To reduce the computational costs, only
the differentiated LU factorization and solver for the chem-
istry are replaced. The main constraint in the process is
to properly make the calls to the differentiated code and
to check the validity of the adjoint with finite differences
comparisons (the so-called Taylor tests).

The ratio of the CPU time needed for the adjoint com-
putation (21 minutes per day with a 3 GHz processor) to
the CPU time needed for the forward computation (about
3 minutes) is approximatively 7. This ratio is not optimal
but this is not an issue in this case.

Each iteration of the procedure needs many evaluations
of the cost function and of the gradient. For instance, 50
iterations of BFGS require 20 hours of CPU time.

No stopping criterion was used. As we were not in an
operational context, we have chosen to let the iterative al-
gorithm go to convergence. Notice that the convergence is
mainly reached during the first steps of the process and that
it is possible to limit the number of iterations without low-
ering the accuracy of the results (see below).

4.2. Twin Experiments without Perturbations

The first purpose is to validate the numerical algorithms
(gradient computation, minimization) on the basis of twin
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experiments without perturbations. It consists in using nu-
merical data on observational data. These numerical obser-
vations are generated on the basis of “true” values for the
control parameters: αt (t stands for true). We then try to
recover these values starting from a first guess in the mini-
mizing algorithm αb (b stands for background).

In practice we use αt
i = 1 and we have chosen to have

30% of underestimation for the first guess: αb
i = 0.7.
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Figure 15. Error for α8 as a function of the iterations
of BFGS.
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Figure 16. Evolution of the cost function with respect
to the iterations of BFGS.

We have plotted the evolution of the cost function with
respect to the iterations of BFGS in the figure 16. The true
parameters are recovered after optimization up to round-off
errors (see for instance the figure 15 for the parameter α8).

4.3. Twin Experiments with Perturbations

The former experiment has been done without any per-
turbations and has proven the validity of the numerical tools.
Before applying the approach to a real case it is however
necessary to evaluate the ability of the system to deal with
perturbations. The underlying issue is to have an estimation
of the quality of the results.

We have chosen to perform two experiments:
1. the first experiment is related to observational errors:

the numerical observations are therefore perturbed;

2. the second experiment is related to model errors: some
input parameters of the model (see below for the details) are
perturbed in order to generate the numerical observational.
It is an easy way to generate model errors.
4.3.1. The impact of Observational Errors

The observational error has in practice two components:
a first component is related to the errors made in the mea-
surement process; a second component is the so-called er-

ror of representativeness and is related to the mismatch be-
tween the observation resolution (for instance a point mea-
surement) and the model resolution (for instance a cell of 1
kilometer by 1 kilometer). The error of representativeness
is probably the most important part, for chemical data, due
to the heterogeneity of the chemical species concentrations
in the vicinity of sources at small scales.

We have chosen to apply a Gaussian perturbation to the
model outputs in order to parameterize the observational
error. This error is assumed:

1. to be uncorrelated between chemical species and be-
tween different spatial locations;

2. to be correlated in time in order to avoid unrealistic
fluctuations of observational errors;

3. to be larger for NO than for NO2 and O3 (with a ratio
of 2) due to the local nature of NO. Notice this is a value
chosen arbitrarily for these twin experiments.
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Figure 17. Observational errors generated for a given
monitoring station in Lille for 11 May.

A typical example of such an observational error gener-
ated by this approach is plotted in figure 17. The impact is
low for the optimized set of parameters (see figure 18).
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Figure 18. NO emissions: reference values and values
obtained with observational error randomly generated.

4.3.2. The Impact of Model Errors
We can distinguish three kinds of model errors:
1. The errors related to forcing fields: meteorological

data, dry deposition parameterizations, boundary condi-
tions, etc. This corresponds in practice to all input param-
eters that may be uncertain but that are not optimized.

2. The errors related to the model itself: for instance,
the segregation effects are neglected and the kinetic rates
are used as if the fields were well mixed.
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3. The errors related to numerical algorithms: for in-
stance, the numerical scheme used for advection may induce
large numerical diffusion.

These model errors lead to discrepancies between the
model outputs and the observational data. A minimization
of the cost function with respect to the emission parame-
ters may be only a fit to observational data while the true
reason for a large value of the cost function may be related
to a large model error. For instance, a reduction of NOx

emissions may have a similar effect as an increase in the dry
deposition velocities of NOx.

In practice, we have perturbed independently each input
parameter except the NOx emissions. For each input field,
an homogeneous value has been applied at each time. Notice
that we have assumed that the model error is unbiased.

It is therefore important to assess the impact of model
errors on the quality of the inverse modeling. We have cho-
sen to parameterize the model errors by applying a Gaus-
sian perturbation to the input parameters listed in section
3, except for the emissions of NOx. We have assumed that
the uncertainties follow a Gaussian law with a variance of
50%, which is coherent with the values given in Hanna et al.
[2001].

The minimization of the cost function leads to a reduc-
tion of 85%. The new emission profile is plotted in figure
19. It is noteworthy that the period 0600-0700 UT in the
morning is highly sensitive to model errors.
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Figure 19. Optimized emissions of NO: reference values
and values obtained with a model error.

4.4. Brief Summary of the Twin Experiments

The preliminary case with the numerical observations has
led to the following conclusions:

1. the numerical algorithms (including the adjoint model)
are validated.

2. the quality of the optimized parameters is not strongly
lowered by observational errors and model errors.

The next section describes the application to the real case
over Lille.

5. Application to a Real Case

The observations are now provided by the stations of the
monitoring network AREMA. The forward model is effec-
tive for modeling O3 and NO2 but is not able to give an
accurate forecast of NO. We have decided then to perform
inverse modeling with and without the observations of NO.
In a first experiment, we have at our disposal 4 observations
of O3 and 10 observations of NO2 per hour.

Our approach is summarized in the following way:

1. the time distribution of α(t) is optimized during a
learning period (typically one week).

2. we check the improvements of the emission inventory
by using the optimized set of parameters during a verifica-
tion period (typically a few weeks after the learning period).

5.1. Inverse Modeling from 11 May to 15 May

We have chosen the week from 11 May to 15 May as a
learning period. Two kinds of experiments have been per-
formed in order to estimate the daily variability of the op-
timized distribution:

1. in a first approach, each day is independently used as
a learning period (5 learning periods), which leads to 5 sets
of optimized parameters.

2. in a second approach, the week (actually 5 days, the
weekend being excluded) is used as a learning period as a
whole, which leads to a unique set of optimized parameters.

In practice we have added a simulation period of 6 hours
before the beginning of the periods in order to take into ac-
count the model spin-up and to lower the influence of the
initial conditions.
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Figure 20. Daily distribution of the optimized parame-
ters α for the learning periods from 11 May to 15 May.

The optimized parameters α are plotted in figure 20 for
the different learning periods defined above. For the first ex-
periment (learning periods of one day), the convergence of
the minimization algorithm (with a strong requirement for
the stopping test) is obtained after a number of iterations
ranging from 59 to 128. The reduction of the cost func-
tion ranges from 25% to 66% (see table 1). The case of the
global learning period (second case) requires 42 iterations
and leads to a reduction in the cost function of 20%.

The runs for the one-day learning periods illustrate the
rather high variability of the optimized parameters. How-
ever, there are some similar features:

1. the coefficients corresponding to hours 7 and 8 are
greater than 1.

2. the coefficients corresponding to hours 17, 18 and 19
are lower than 1.

These two periods are highly sensitive since they are re-
lated to the emissions peaks but also to key evolutions of
other processes (photolysis and vertical mixing).

12 May is not well modeled: the initial cost function has
high values. We suspect then that other parameters have
bad values and that the model error (as defined above) is
large.

We also observe an overestimation of α in the night from
Sunday to Monday and in the night from Friday to Saturday.
One possible realistic reason could be the overestimation of
traffic-jams related to weekends.
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Table 1. Values of the cost function before and after optimizations; performance of the convergence of the BFGS
algorithm for the different learning periods.

11 May 12 May 13 May 14 May 15 May 11-15 May

Initial cost function (10−5) 5.38 9.50 7.65 3.85 2.96 16.
Optimized cost function (10−5) 2.55 3.03 4.40 2.91 2.06 12.8

Iterations of BFGS 101 128 59 64 55 42

The plots labelled by “11-15 May (Mean)” are related to
the average of the 5 optimized sets of parameters obtained
with a one-day learning period. Notice that the distribu-
tion is similar to the distribution obtained with a five-day
learning period, labelled by “11-15 May (Simulated)”.

The time distribution obtained for the emissions is then
plotted in figure 21. One key remark is of course the lack
of symmetry between the morning and the end of the af-
ternoon. There are many possible reasons for that: this
could be due to model errors (for instance the extension of
the mixing layer in the morning); another reason that could
explain these features is related to different regimes of emis-
sions (cold emissions in the morning) that are perhaps not
well represented by the emission inventory.
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Figure 21. Daily distribution of NO emission for the
period 11-15 May. Reference and optimized parameters.

5.2. Verification

We have checked the improvement of the emission inven-
tory by applying the optimized time distribution to other
weeks than the learning week. The Root Mean Square Er-
rors (RMS) and the correlations computed for the learning
week and the two weeks after are given in Table 2. The
forecast skills are improved with the exception of the RMS
for NO during week 25-30 May.

5.3. Use of other Learning Periods

The variability of the optimized parameters with respect
to the learning period is a way to investigate the robust-
ness of the approach. As one can assume that there is no
key reason justifying that the time distribution has a dras-
tic evolution from one week to another, this is more or less
equivalent to investigating the sensitivity to meteorological
conditions.

The optimized parameters for three different learning pe-
riods (week 11-15 May and the two weeks after) are plotted
in figure 22. We observe similar behaviors for the three
learning periods: high values in the morning and low values
at the end of the afternoon. The fact that the results are

not highly sensitive to the learning period is an indication
that the approach is robust.
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Figure 22. Optimized time distributions for three dif-
ferent learning periods. The “reference curve” stands for
a first guess equal to 1.

5.4. Second-Order Sensitivity

The results of the inverse modeling procedure depend on
many parameters that may be uncertain: the meteorologi-
cal conditions, the parameterizations, other emissions, etc.
They also depend on some parameters referred to as “assim-
ilation parameters”: for instance, the first guess, the covari-
ances matrices (if any, which is not the case in this study)
or the observational operator.

Mathematically speaking, we can write the cost function
J with a more general form as J(α, kp, ka) where kp stands
for the physical parameters supposed to be known (but un-
certain) and ka for the assimilation parameters.

The optimized values α? are given by:

∇αJ(α, kp, ka) = 0 (6)

which defines a function α?(kp, ka). The second-order sensi-
tivity deals with the sensitivity of these optimized parame-
ters with respect to kp (robustness with respect to physical
parameters) and ka (impact of the monitoring network, typ-
ically).

A comprehensive way to assess this sensitivity is to com-
pute the partial derivatives of α? with respect to kp and ka.
This may be done with the Hessian matrix of J [Le Dimet
et al., 2002].

It is of course a huge task to develop this Hessian matrix
when J is related to 3D comprehensive models, such as Po-
lair3D. Even if this second-order mode is available [Sportisse
and Quélo, 2003], we have chosen to use another simpler ap-
proach. We have chosen to compute the optimized results α?

with perturbed values of some assimilation parameters and
of physical parameters. More precisely, we have restricted
the study to the impact of the first guess, the impact of
NO observations and the impact of Kz (which describes the
mixing layer).
5.4.1. Impact of the First Guess
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Table 2. RMS errors and correlations (in brackets) before (reference) and after optimization (optimized) of the
time distribution α during week 11-15 May.

11-15 May 18-13 May 25-30 May
Reference Optimized Reference Optimized Reference Optimized

O3 32.7 (0.83) 29.6 (0.87) 19.9 (0.82) 18.9 (0.85) 20.8 (0.61) 18.1 (0.69)
NO2 29.4 (0.36) 25.5 (0.52) 19.9 (0.49) 18.4 (0.59) 19.4 (0.24) 17.4 (0.29)
NO 27.4 (0.61) 26.6 (0.66) 19.7 (0.49) 17.7 (0.66) 20.3 (0.38) 21.5 (0.40)
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Figure 23. Optimized time distribution for two sets of
first guesses for α (1 or 0).

A first experiment has been performed in order to check

the sensitivity with respect to some assimilation parameters,

such as the first guess for α. As said before, we have not

used a penalty term for the cost function (usually referred

to as a background term) because the problem is well posed

and does not require a regularization technique. What we

call here a “first guess” is the choice of the reference val-

ues for α, that is, the initial values used for starting the

minimization algorithm.

We have compared two choices for first guess: the first

guess is either 1 (that is to say we start from the time dis-

tribution given by the emission inventory) or is 0 (lack of

information for the time distribution of emissions at the be-

ginning).

A key result is that we obtain the same distribution af-

ter optimization (see figure 23). The number of iterations

required for convergence is however larger for the second

case as the starting point is farther from the optimal values

(27 iterations against 22 in the first case). Mathematically

speaking, this proves that the cost function has a strongly

convex behavior in a large domain around the optimal set

of parameters.

This result proves that the optimized time distribution

may be recovered without any use of a priori information

given by the emission inventory.

5.4.2. Sensitivity with Respect to the Observed
Species

We have chosen up to now not to take into account the

observations of NO. We investigate in this subsection the

impact of these observations. We have still assumed that

the observational errors for all species are the same ones

(even if this is probably not the case: NO has for instance

a larger error of representativeness due to its local nature).

The results are plotted in figure 24. We recover a similar

qualitative behavior as before, even if the overestimation in

the morning is increased. This is consistent with the strong

underestimation of NO concentrations by the model in the
morning.
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Figure 24. Optimized distribution by adding observa-
tions of NO. The reference curve stands for the optimized
α without NO observations.

5.4.3. Sensitivity with Respect to Vertical Mixing
We have already mentioned the sensitivity at the begin-

ning of the morning, which corresponds to the transition
from the nocturnal stable boundary layer to a mixed layer.
It is however well recognized that the parameterization of
Kz has a key impact on model outputs. Another reason
could be the impact of sunset through photolysis but our
tests (not reported here) do not indicate a strong sensitiv-
ity.

In order to assess the sensitivity of the results with re-
spect to Kz, we have artificially decided to shift forward the
time distribution of Kz by one hour. The start of the ex-
tension of the mixed layer then occurs one hour after the
reference case.

The optimized parameters are plotted in figure 25 for one
day (11 May). As expected, the main differences are ob-
tained during the transition periods in the morning and in
the afternoon. The time distribution is however not highly
modified, which confirms the robustness of the result.
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Figure 25. Optimized distribution for 11 May: with the
reference Kz and with a shifted Kz.
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Conclusions and Future Works

We have applied a variational approach in order to per-
form inverse modeling of emissions at regional scale, over
Lille in northern France. After a sensitivity analysis, we
have chosen to optimize the time distribution of NOx on the
basis of observations of O3, NO2 and NO.

Twin experiments have proven the validity of the numer-
ical models (especially the adjoint model of our Chemistry-
Transport-Model, Polair3D, obtained by automatic differ-
entiation). We have also tested the impact of observational
errors and of model errors in numerical tests.

The application to one week of May 1998 has led to an
optimized set of parameters. A verification test (by apply-
ing the optimized distribution to the next two weeks) has
confirmed the improvement of the forecast skills.

A brute-force second-order sensitivity analysis has also
been performed in order to check the robustness of the opti-
mized parameters with respect to other uncertain parame-
ters (first guess, meteorological conditions, Kz). The results
have proven that the optimized time distribution is robust.

Future work will be devoted to the application at conti-
nental scale (with a focus on spatial distribution rather than
time distribution) with a focus on second-order sensitivity.
Another key point could also be to take into account model
errors in the inverse modeling process. Many approaches are
under investigation, ranging from combined inverse model-
ing of other parameters than emissions to weak formulations
of the variational problem or Monte Carlo simulations of the
inverse modeling procedure.
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Quélo, D., Simulation numérique et assimilation de données varia-
tionnelle pour la dispersion atmosphérique de polluants, Ph.D.
thesis, École Nationale des Ponts et Chaussées, 2004.

Sandu, A., F. Potra, G. Carmichael, and V. Damian, Efficient im-
plementation of fully implicit methods for atmospheric chem-
ical kinetics, J.Comp.Phys., 129, 101–110, 1996.

Segers, A., Data assimilation in atmospheric chemistry models
using kalman filtering, Ph.D. thesis, TU Delft, 2002.

Simpson, D., et al., Inventorying emissions from nature in Eu-
rope, J. Geophys. Res., 104 (D7), 8,113–8,152, 1999.
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