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Abstract: Lagrangian atmospheric dispersion models consist of tracking the
trajectories of particles of pollutant emitted into the atmosphere. In this
paper, the objective is to compare the Lagrangian and Eulerian dispersion
models in the same computational fluid dynamics code (Code_Saturne),
therefore using the same wind and turbulence fields for both. The Lagrangian
stochastic model used in this work is the simplified Langevin model (SLM)
of Pope (1985, 2000) and pertains to the approaches referred to as probability
density function methods. This model has been extensively used in turbulent
combustion or multiphase flows, but to our knowledge, it has not been used in
atmospheric dispersion applications. First, we show that the SLM respects the
well-mixed criterion. Then, we validate the model in the case of a continuous
point release with uniform mean wind speed and turbulent diffusivity. Finally,
we validate the model with an experimental campaign involving a stably
stratified surface layer.
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1 Introduction

A cloud of pollutants released into the atmosphere is subject to various processes,
among which the two main processes involved in this paper are: advection and
diffusion. By definition, the turbulent dispersion is characterised by the combination of
advection and turbulent diffusion. This phenomenon is highly dependent on turbulent
flow characteristics. There is indeed a wide range of eddies in the atmospheric boundary
layer and they all participate in their own way to the transport and diffusion of the
cloud. In particular, the turbulent dispersion of the pollutants is not as effective close to
the emission source as opposed to further away: the difficulty of its modelling therefore
amounts to correctly taking into account the effect of the different turbulent structures.
In this work, the focus is on the atmospheric dispersion modelling at local scale (urban
or industrial sites), i.e., for distances of the order of a few kilometres.

The so-called Eulerian models of dispersion are based on the resolution of the
advection-diffusion equation on a scalar field corresponding to the concentration of
pollutant. This is done by performing a discretisation of this equation in time and space
on a mesh. Eulerian models have been used so far at EDF R&D (Electricité de France)
to model atmospheric dispersion, by means of the computational fluid dynamics (CFD)
code Code_Saturne and making use of its atmospheric module. On the other hand, the
Lagrangian models consist of calculating and tracking the trajectories of particles in a
turbulent flow. The cloud of pollutants is discretised and described by a large number of
particles emitted into the atmosphere. In this work, the objective is to make use of both
the Lagrangian and the atmospheric modules of Code_Saturne to model the turbulent
dispersion of pollutants with the Lagrangian approach and compare it to the existing
results previously obtained with the Eulerian methods.

2 Methodology

Code_Saturne (http://code-saturne.org/) is an open-source CFD code, developed at EDF
R&D since 1997. It solves the general equations of fluid mechanics (i.e., continuity
equations, momentum, energy and turbulence) using numerical methods and turbulence
models. These equations are solved on all types of meshes, including complex
unstructured meshes. More details on the numerical methods implemented in the code
are provided in Archambeau et al. (2004).
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The methodology for stationary dispersion simulations in Code_Saturne is the
following. Two calculations are performed. The first calculation is used to calculate
the dynamical mean fields associated to the wind flow (‘continuous phase’): velocity,
pressure, temperature and turbulence. Once the steady state is reached, this calculation
is stopped. The second calculation simulates the dispersion of pollutants within the
pre-calculated flow field (‘dispersed phase’), thus at fixed velocity, pressure and
temperature and turbulence fields. The Eulerian and Lagrangian methods used in
our work for the dispersion calculation are detailed subsequently. The turbulence
models used for our studies are Reynolds-Averaged Navier-Stokes (RANS) models with
classical first-order k — € or second-order R;; — € closures adapted to the atmosphere
and complex geometries.

2.1 Eulerian approach

If we consider a species of concentration ¢ within the pre-calculated flow (assumed to
be incompressible), Code_Saturne will solve the following advection-diffusion equation:

o{c) o{c) 0 o{c)
W+< f’j>(’)xj = o, <D8xj

- <U},jc'>> sy )

where (Uy ;) is the mean velocity of the fluid along the j axis, D the molecular
diffusivity and (S) the source term.

2.2 Lagrangian approach

Let X,(t) be the position of a particle included in the air flow at a time ¢. Then:
dX, = U,(t) dt. The movement of each particle included in the flow described by
U,(t) is governed by Newton’s second law. Assuming heavy particles, with a diameter
of the same order of magnitude as the Kolmogorov length scale, the equation obtained
on the particle velocity is (Minier and Peirano, 2001):

v, U,-U,
= P 2
dt Tp g I ( )

where U, is the velocity of the fluid sampled through the trajectory of the particle
(Us(t) = Us(Xp(t)), t)), and 7, the relaxation timescale of the particle. When 7,
tends to zero, U, tends to U, and and the limiting case of fluid particles is reached.
Thus, every type of particles can be simulated, from gaseous particles to particulate
matter.

As the wind flow is calculated using RANS models, we only have access to the
statistical mean value of Ug. Thus, in order to close (2), the turbulence effects need to
be reconstructed: this is done by introducing a stochastic differential equation modelling
the evolution of Us.
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2.3 The SLM (Pope, 1985, 2000)

For the sake of simplicity, let us consider the case of fluid particles, i.e., U; = U,. Then
the simplified Langevin model (SLM) is written as follows:

19(P) Upi — (Uss)
au, ; = —— dt — -2 = dt + / CoedW; 3
D, P 8371 TL + 0€ ( )
oNP) . . D
where — is the mean pressure gradient, Cy a constant, ¢ the mean dissipation

% n % Coc is the
‘Lagrangian timescale’ which actually stands for a particle return-to-isotropy timescale.
In the case of the simplified Langevin model, it is isotropic.

It should be noted that the SLM is a particular case of the generalised Langevin

model also introduced in (Pope, 1985, 2000), which is written as follows:

and dW; a Wiener process of mean 0 and variance dt. Also: T, =

_19(P)
p Ox;

dU,,; = dt + Gij(Uyj — (Uy;)) dt + \/Coe dW; . (4)

Writing G;; = —1/T16;; , the SLM is retrieved. The SLM has been extensively used
especially in turbulent combustion modelling (see Pope, 1985, 1991), in single-phase
flow turbulence modelling (Pope, 1994), and also in dispersed turbulent two-phase flows
applications (Minier and Peirano, 2001; Minier, 2015). It has also been adapted and
used in the context of large-eddy simulation (LES) turbulent dispersion studies, see, for
example, Gicquel et al. (2002) or Shotorban and Mashayek (2006).

On the other hand, to our knowledge, this formulation of model with the pressure
gradient has not been widely used in the context of atmospheric dispersion. There are
several reasons why we have chosen to go further developing it. First, it is written in
terms of instantaneous velocity which allows a very simple formulation with the mean
pressure-gradient term clearly included in the drift term. It should be highlighted that
the presence of this mean-pressure gradient term is what allows the mean-continuity
equation to be respected and thus ensures the model to be free of spurious drifts
(Pope, 1987; Minier et al., 2014). Historically, in atmospheric studies, to make up
for observed spurious drifts in their models, written in terms of fluctuating velocity,
several authors heuristically added ad-hoc drift terms (see Lin and Gerbig, 2013). This
made the formulation of their models much more complex than if they were written
in terms of instantaneous velocity only with the pressure-gradient term. Indeed, the
latter formulation requires the calculation of only three gradients, one for each direction,
instead of 18 with the formulation written in terms of fluctuating velocity, used by
Thomson (1987) for example. Moreover, by construction (see Pope, 2000), the SLM
ensures full consistency with the mean Navier-Stokes and the Reynolds equations with
Rotta’s closure. Finally, no hypothesis is made on the probability density function (PDF)
of the velocity of the particles, which was not the case of many of the models used in
the atmospheric literature. For instance, Thomson (1987) and derived models assumed
the PDF to be Gaussian, but this hypothesis is no longer valid when we move to
convective atmospheric boundary layer cases. In these cases, several models following
the Thomson (1987) approach and based on non-Gaussian PDFs have been developed:
the reader may, for example, refer to Baerentsen and Berkowicz (1984), Luhar et al.
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(1996) and Rotach et al. (1996). Another strategy for the convective boundary layer
has been proposed in Franzese et al. (1999) and makes no assumption on the form of
the PDF of the velocity. Instead, they introduce a simple parameterisation for the drift
term in the Langevin equation by approximating it as a quadratic function of velocity.
In the case of the SLM, and more generally in the PDF framework developed by Pope,
the PDF is a result of the model. It should be noted that no study in highly skewed
turbulence conditions has yet been conducted with the SLM, which thus could be the
subject of interesting further investigations.

Note that as we have mentioned, in our methodology, we use the formulation of the
SLM with instantaneous velocity, that is with the mean-pressure gradient term, because
we have access to the fluid mean pressure field through the Code_Saturne RANS
simulation. In many other models used in the literature, the wind field is computed
by a different large hydrostatic scale code, or by a wind field reconstruction code
from the measurements. In these cases, the formulation in fluctuating velocity of the
SLM, involving the mean quantities (Uy ;) and (U} U} ;) instead of the mean-pressure
gradient term, is recommended. More details on the equivalence between models written
in terms of instantaneous and fluctuating velocities can be found in Minier et al. (2014).

3 Well-mixed criterion

The well-mixed criterion states that an initially uniform particle concentration in a
turbulent flow should remain uniform. In this section, we will show that the SLM
respects this criterion. We studied two cases respectively corresponding to homogeneous
and inhomogeneous turbulence. For the case with homogeneous turbulence we found
that the criterion was well satisfied (not shown here). In this paper, we present the
case of inhomogeneous turbulence which involves an obstacle within a boundary layer.
Given the stationary flow corresponding to this situation, we first initialised the domain
with uniform particle concentration. Then, we injected, at the inlet, a uniform particle
concentration field. We then observed the temporal evolution of the particles (subjected
to the mean velocity and turbulence fields relative to the carrier fluid). After a transient
time where the particles mix in the domain, a stationary state is reached. The objective
is to check if the concentration remains uniform over time.

The mesh is uniform and contains 798,400 cells. The fluid fields and the
corresponding boundary conditions are shown on Figure 1. For the fluid phase, we use
the second-order R;; — ¢ Launder, Reece and Rodi (LRR) model with Rotta’s closure,
which is by construction the model that is fully consistent with the SLM [see Pope
(2000) for details].

The time step is dt = 0.0001 s — such a value is due to the need to use a time step
much smaller than the smallest value of 77, over the fluid domain (7%, ynsn = 0.001 s).
At each time step, 352 particles are injected so that the total number of particles over the
domain is about 3,000,000 at convergence, i.e., about four particles per cell, assuming
a perfectly uniform repartition. Therefore, it should be noted that starting from a given
time step tg, which should be greater than the time needed for the calculation to reach
its steady state, the computed statistics are cumulated over time, in order for them to be
reliable. In other words, for any statistical variable Y and for any position x, at each
time step ¢,, > to, the cumulated-over-time statistic (Y') is written as follows:
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n
t; —tj—1
St —to
In our case, we choose to calculate cumulated-over-time statistics after the particles have
gone through the whole domain at least once (i.e., the so-called ‘advection time’ of the
particles).

Figure 1 Mean fluid fields, (a) velocity magnitude (m/s) (b) turbulent kinetic energy
k (m?/s®) (c) turbulent kinetic energy dissipation rate ¢ (m?/s®) (see online
version for colours)

symmetry

outlet

epsilon
2.16e-01 2e+2 4de+2 obe+2 ?.88e+02
e S o
(©)

One point is to be made here, answering the following question: what happens
if the pressure-gradient term is not properly taken into account in the Langevin
equation? Indeed, it has not historically always been the case in the atmospheric
Lagrangian models, as we discussed in the previous paragraph. To answer this
question, two configurations are examined (see Figure 2, which shows mean normalised
concentration fields ¢/(c), where (c) is the expected mean concentration given the
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particle initialisation). Configuration (a) corresponds to the simulation with a properly
taken into account pressure-gradient term and the use of the fully consistent R;; — ¢
Rotta model, with a close view around the critical zone of the obstacle. Configuration
(b) is the same as configuration (a), but removing the pressure-gradient term from the
Langevin equation. The configuration (a) shows a uniform concentration (the global
spatial error compared to the ideal uniform case is not shown here but is about
5.06% and is mainly due to small discrepancies around the obstacle: locally, in a few
cells visible in the close view around the obstacle, the maximum deviation is up to
56%). Obviously the removal of the pressure-gradient term [configuration (b)] leads to
important spurious drifts upstream and downstream the obstacle (the global spatial error
increases up to 52.8%). This simulation highlights the fact that the pressure-gradient
term, as it is such that the mean velocity field satisfies the divergence-free condition, is
exactly what makes it possible to maintain a uniform concentration.

Figure 2 Mean normalised concentration field, (a) taking into account pressure-gradient term
and use of the fully SLM-consistent R;; — € Rotta model (b) no pressure-gradient
term and use of the fully SLM-consistent R;; — ¢ Rotta model (see online
version for colours)
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4 Validation case: continuous point release with uniform mean speed and
turbulent diffusivity

In this section, the objective is to validate the SLM in the case of a continuous
point release (mass flow rate: (), under uniform mean wind speed and homogeneous
turbulence conditions. This study is of interest because under these conditions, there is
an analytical solution. It is therefore an opportunity to compare the Lagrangian SLM
model with this solution, as well as to observe the differences with the Eulerian model.
The solution was first obtained by Taylor with some hypothesis on the form of the
autocorrelation function (see Arya, 1999), for the field of maximum concentration as a
function of the distance to the source z. It is written as follows:

Q

(Cmaz (7)) = VI Uy o) (6)
where o, (x) is the plume standard deviation, formulated as follows:
o.(x) = ou, . (z) - )
(Uga)y 1+ 20,71

This formulation, used in numerous atmospheric dispersion codes, allows the
well-known discrimination of near-field/far-field regimes of diffusion (see Arya, 1999)).
Figure 3 shows the maximum concentration and the normalised plume standard
deviation along the axis following the centre of the plume. The objective is to compare
both the Eulerian and Lagrangian results to the analytical solution previously introduced.
It should be noted that the Eulerian model used here for the calculation of turbulent
scalar fluxes is a first-order simple gradient diffusion hypothesis (SGDH) model.

Figure 3 shows that the Lagrangian model provides here much more accurate results
than the Eulerian model. This is due to the fact that the Eulerian RANS first-order
model (SGDH on the graphs) used in our study is not able to reproduce the different
diffusion behaviours between near and far fields. In the near field, there is a rapid
spread, while far from the source, the diffusion is slower. This is of course taken into
account in the analytical solution through the formulation of the standard deviation
[see equation (6) and equation (7)]. By construction — demonstration not shown here,
see Pope (2000) for details — this characteristic is also intrinsically included in the
Lagrangian model. Figure 3 shows that near the source, there is a sharp and significant
drop in concentration for the Lagrangian model and the analytical solution, which
means rapid diffusion, whereas the Eulerian model diffuses much more slowly. On the
other hand, far from the source, there is a quasi-parallelism between the three curves,
which reflects an identical diffusion whatever the approach: the theoretically well-known
proportionality of the plume concentration standard deviation to the inverse-distance
from the source is retrieved. One important point to be remembered here is that the
Eulerian model used for the calculation of turbulent scalar fluxes is an SGDH model,
which uses a first-order closure for the advection-diffusion equation. A differential
flux model (DFM), or in other words a full second-order RANS model, should yield
results more similar to the analytical solution, since it uses a second-order closure that
completely transports the turbulent scalar fluxes. However, this model is not completely
developed yet and has not been used here.
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Figure 3 Maximum concentration and normalised plume standard deviation profiles along
the axis following the centre of the plume, (a) maximum concentration along the
flow axis (b) normalised plume standard deviation along the flow axis (see online
version for colours)
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5 Industrial case: SIRTA

The Site Instrumental de Télédétection Atmosphérique (SIRTA) site, located in the
southern suburb of Paris, is a complex site containing buildings, a lake and area
of dense vegetation. In our work, the objective is to simulate in Code_Saturne a
near-field (50 to 200 m) dispersion experiment carried out on this site in 2015. The
experimental campaign involved a stably stratified surface layer and an almost easterly
wind. Simulations in Code_Saturne of different dispersion experiments at SIRTA have
already been performed in the past by Wei et al. (2016) and Chahine et al. (2018).
Figure 4 shows a view from the top of the SIRTA site, with a representation of its
different zones. The campaign we study is located in zone 1 (in yellow on the figure)
and the simulation domain is shown in red on the figure. This area is bounded by a
forest to the north and a road to the south. The mesh for the modelling area and the
position of the source and the device instruments are also shown in Figure 4.

Figure 4 SIRTA site’s map, instrumental devices and mesh (horizontal cross section) for
the modelling area (see online version for colours)
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The simulation domain is of dimensions 1,600 m (East-West) x 700 m (North-South)
X 200 m (vertical direction). The mesh contains 4,579,071 cells. It is refined near
the ground and in the instrumented area. The horizontal resolution ranges from 1 m
in the instrumented area (180 m x 100 m) to 5 m for the rest of the computational
domain. The vertical resolution ranges from 0.5 m near the ground to 10 m at 200 m
height. The buildings upstream the instrumented area are explicitly meshed. As for the
ground modelling, a land-use file provided by the Institut national de [’information
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géographique et forestiere (IGN) is used to distinguish the different land cover types
(forest, lake) and assign to each of them a corresponding roughness length.

The fluid phase is computed using a RANS %k — € model, with an SGDH closure for
the scalars. The boundary conditions are defined as follows:

e Inlet condition of Dirichlet type, with analytical profiles obtained from
Monin-Obukhov similarity theory.

e  Qutlet condition: free outflow.

e Ground, low vegetation and buildings: rough wall, with a roughness length of
0.3 m.

e Lake: rough wall, with a roughness length of 0.0001 m.

As for the forest, it is modelled through an analogy with a porous media. We modify
the k — e model equations in order to simulate the momentum losses and turbulence
generation within the forest. Indeed, the canopy creates a drag force opposed to the flow,
which reduces the wind velocity and modifies the turbulence fields. This model has been
developed and used by Sanz (2003), Katul et al. (2004), Dalpé and Masson (2009), Zaidi
et al. (2013) and Wei et al. (2016). For earlier relevant references for the study of canopy
flow, the reader may refer to Wilson and Shaw (1977), or Shaw and Schumann (1992)
who used LES simulations. The added source term in the Navier-Stokes momentum
equation is written as follows:

Su,i = —paCa|Us|Us,; )
where p is the air density, « the leaf area density and Cy the drag coefficient of the
forest. In our study, Cy = 0.2 and a = 0.5 m~!. The turbulence source terms S and
Sc in the k and e equations are expressed as:

Sk = paCafp|Us|® — paCafak|Uy] ©)

€ -

Se= pacdcdﬂp%\uf\d — paCyCes Bae|Uy| (10)

where ), B4, Cea and Ccs are constants of the model, expressed as follows:

Bp=1, (11a)
2 \*? 3
Ba=+/Cy <005> By + 5o =503, (11b)
2 2 2/3
Ce4 = CeS =0k [((O - \/@) /6> (005> (062 - Cel) =09 ) (110)

where the set of constants (C,, Cc1, Ce2, 0k, 0.) takes the following values given by
Launder and Spalding’s (1974) standard model:
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Within this flow field, the pollutant (propylene, C3Hg) is continuously injected through
a scalar source term, with the imposed pollutant mass flow of 200 L/min. As for the
Lagrangian approach, 20,000 particles per time step are injected, with the same imposed
mass flow.

Figures 5 and 6 show the results through the comparison of the mean concentrations
(ppmv) between measurements and simulations for the six points of measurements
described in Figure 4 (green points corresponding to the ‘PID’ — photolonisation
detectors — caption). PID 1 to 5 are located at z = 3 m and PID 6 is not shown on
Figure 4 but is located at z = 10 m over PID 3.

Generally speaking, the results given by the Lagrangian and Eulerian models are
close, though we can observe in Figure 6 greater vertical diffusion with the Lagrangian
SLM than with the Eulerian model, hence the lower concentrations at z = 3 m observed
in Figure 5. The important vertical diffusion observed with the SLM is believed to
be due to the fact that the SLM is a simple model with a linear return-to-isotropy
assumption. The G;; tensor of equation (4) is diagonal and isotropic (G;; = —1/T1). A
more advanced model, such as for instance the Launder, Reece, Rodi — isotropisation of
production (LRR-IP) model, adds to the Rotta model a contribution called ‘isotropisation
of production’, which increases the Reynolds-stress anisotropy (see Pope, 2000). This
model could therefore be an interesting path for further investigations.

Figure S Comparison of the mean concentrations (ppmv) between measurements and
simulations — PID 1 to 5 (see online version for colours)
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Notes: The plume corresponds to the sketch of the instrumented zone and
the source shown in Figure 4, for a more visual representation.
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Figure 6 Comparison of the mean concentrations (ppmv) between measurements and
simulations — vertical profile — PID 3 and 6 (see online version for colours)
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An interesting point is that the zone we are interested in, at a distance of 50 m, is already
considered as ‘far field’, where both models are expected to show the same diffusion
behaviour. Indeed, when speaking about near and far fields, one has to remember that
it is always in comparison to the value of 7. At the injection cell, the fluid velocity is
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about 1.4 m/s and 77, = 8.8 s. Therefore, the near-field region corresponds to distances
approximately below 1.4 x 8.8 ~ 12 m. As the PID are located at a distance of 50 m,
they are already located in the ‘far-field region’. Figure 7 shows the concentration
along the axis following the centre of the plume, computed by both the Eulerian and
Lagrangian approaches. This concentration is normalised by its maximum value obtained
at the injection cell. Exactly as for the analytical case presented in the previous section,
we can observe the ability of the Lagrangian model to reproduce the difference of
behaviours between near and far fields. In the near field, that is to say for distances
below approximately 12 metres, the Lagrangian model shows a rapid spread, which
slows down for higher distances. We can also observe the logical tendency of both the
Lagrangian and Eulerian curves to become parallel starting from this distance. Once
again, one has to remember that these results are due to the fact that the Eulerian
and Lagrangian models used here are not at the same level of closure. The Eulerian
model uses a first-order turbulence closure whereas the Lagrangian model (SLM) is
second-order. A full second-order Eulerian model would be expected to provide similar
results as the Lagrangian model and is in fact the subject of further investigations.

Finally, to sum up, one important conclusion from this analysis is that as long as
the source is located in a small-T7, region, then the ‘near-field’ region will stay close
to the source. This will actually happen for all near-ground releases in general, as also
mentioned in Naslund et al. (1994), given that T, takes small values near the ground.
In these cases, the usefulness of a Lagrangian Langevin model is therefore restricted
and an Eulerian first-order model would be a satisfactory option.

6 Conclusions

The objective of this work is to develop a Lagrangian stochastic tool to simulate
atmospheric dispersion simultaneously with Eulerian dispersion, within the CFD code
Code_Saturne. After choosing to work with the SLM (Pope, 1985, 2000), we have
validated this model for several situations. First we have ensured that our model respects
the well-mixed criterion, considering a general case of inhomogeneous turbulence. In
the latter case, we have shown that the pressure-gradient term is exactly what allows the
well-mixed criterion to be fulfilled. Then, we have also validated the SLM by checking
with an analytical solution and have shown indeed the well-known distinction by the
model of the two regimes of diffusion (near and far fields). Finally, to this date, we
are currently validating the model for several industrial cases. Results have been shown
in this paper for the SIRTA campaign, using a RANS k£ — € model for the fluid phase.
Further investigations are to be conducted on the use of the R;; — e model, as this
requires the development of the right turbulence source terms corresponding to this
model.
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